Acta Crystallographica Section E

Structure Reports

Online

4-[(Z)-(2-Fluorenylamino)phenylmethylene]-5-methyl-2-phenyl-2H-pyrazol-3(4H)-one

ISSN 1600-5368

Feng Bao, ${ }^{\text {a }}$ Xing-Qiang Lü, ${ }^{\text {a }}$
Qing $\mathbf{W} \mathbf{u}^{a}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *
${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala
Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.042$
$w R$ factor $=0.116$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The NH unit on the exocyclic $\mathrm{C}=\mathrm{C}$ double bond in the title compound, $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$, lies on the same side of the double bond as the carbonyl unit of the pyrazolonyl ring, and the two interact through an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond $[2.671$ (2) \AA A $]$.

Comment

Two earlier studies reported on 4-[(Z)-(2-arylamino)phenyl-methylene]-5-methyl-2-phenyl-2 H -pyrazol-3-ones (Bao et al., 2004; Jiang et al., 2004), a class of pyrazolones that are readily synthesized from a benzoylpyrazolone and a primary amine. For the present study, the primary amine selected for the condensation was 2-aminofluorene; the amine itself features $\mathrm{N}-\mathrm{H} \cdots \pi$ hydrogen-bonding interactions in the solid state (Steiner, 2000). The title compound, (I) (Fig. 1) shows structural features that are similar to those in reported compounds, such as, for example, a short intramolecular amino-carbonyl hydrogen bond.

Received 15 June 2004
Accepted 18 June 2004 Online 26 June 2004

(I)

Experimental

1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone ($3.20 \mathrm{~g}, 11.5 \mathrm{mmmol}$) and 2-aminofluorene ($2.26 \mathrm{~g}, 12.5 \mathrm{mmmol}$) were dissolved in ethanol (35 ml); formic acid $(0.5 \mathrm{ml})$ was added to catalyse the reaction. The solution was heated under reflux for several hours. The solvent was removed and the pure product obtained upon recrystallization from a 1:1 ethanol $/ n$-heptane mixture in 85% yield. Crystals were grown from an ethanol solution. Elemental analysis calculated for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$: C 81.61, H 5.25 , $\mathrm{N} 9.52 \%$; found: C 81.90 , H 5.36 , N 9.38\%.

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}$	$D_{x}=1.270 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=441.51$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 934
$a=9.700(1) \AA$	reflections
$b=22.441(3) \AA$	$\theta=2.9-25.7^{\circ}$
$c=10.638(1) \AA$	$\mu=0.08 \mathrm{~mm}^{-1}$
$\beta=94.583(3)^{\circ}$	$T=298(2) \mathrm{K}$
$V=2308.4(5) \AA^{3}$	Block, colorless
$Z=4$	$0.37 \times 0.30 \times 0.23 \mathrm{~mm}$

Data collection

Bruker SMART area-detecto
\quad diffractometer
φ and ω scans
Absorption correction: none
13811 measured reflections
2835 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-12 \rightarrow 10$
$k=-28 \rightarrow 28$
5038 independent reflections
$l=-11 \rightarrow 13$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.05 P)^{2}\right. \\
& \quad+0.2453 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F\left(F^{2}\right)=0.116\right.$
$S=1.00$
5038 reflections
312 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 1
An ORTEPII (Johnson, 1976) plot of (I) at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.
$\mathrm{H}=0.96 \AA$ for the methyl H atoms and $\mathrm{C}-\mathrm{H}=0.97 \AA$ for the methylene H atoms), and their displacement parameters were set to 1.2 times $U_{\text {eq }}$ of the parent atoms for the aromatic and methyl C atoms, and to 1.5 times $U_{\text {eq }}$ for the methyl C atom. The methyl group was allowed to rotate but not to tip. The amino H atom was located and refined.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province, Sun Yat-Sen University and the University of Malaya for supporting this work.

References

Bao, F., Lü, X.-Q., Wu, Q., Kang, B.-S. \& Ng, S. W. (2004). Acta Cryst. E60, o155-o156.
Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Jiang, J.-J., Lü, X.-Q., Bao, F., Kang, B.-S. \& Ng, S. W. (2004). Acta Cryst. E60, o1149-o1150.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Steiner, T. (2000). Acta Cryst. C56, 874-875.

